En 1957 los matemáticos japoneses Y. Taniyama y G. Shimura plantearon, sin demostrar, un resultado que relacionaba las formas modulares con las curvas elípticas, dos objetos matemáticos a priori inconexos. Gracias al trabajo de A. Weil, se establecieron las bases que respaldaban la posible validez de la denominada conjetura de Taniyama-Shimura-Weil, conocida actualmente como el teorema de la modularidad. Este trabajo se centra en comprender de manera precisa todos los elementos que intervienen en el enunciado de dicho teorema. Con este propósito, se estudiarán las formas modulares que son funciones meromorfas en el semiplano superior complejo que cumplen una cierta condición de regularidad. En segundo lugar, se presentarán los toros complej...
Modular forms are functions with an enormous amount of symmetry that play a central role in number t...
AbstractThe purpose of this paper is to decide the conditions under which a CM elliptic curve is mod...
[For the entire collection see Zbl 0547.00007.] \\par This is the written version of a talk at the A...
This is an exposition of some of the main features of the theory of elliptic curves and modular form...
AbstractLet E be a CM elliptic curve defined over an algebraic number field F. In the previous paper...
This thesis is an exposition on the theory of elliptic curves and modular forms as applied to the Fe...
Abordamos, de maneira elementar, as estruturas algébrica e topológica sobre a qual são construídas a...
The Modularity Theorem states that all rational elliptic curve arise from modular forms. In 1995, An...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
The Shimura-Taniyama conjecture states that the Mellin transform of the Hasse-Weil L-function of any...
The Shimura-Taniyama conjecture states that the Mellin transform of the Hasse-Weil L-function of any...
Modular forms are functions with an enormous amount of symmetry that play a central role in number t...
AbstractThe purpose of this paper is to decide the conditions under which a CM elliptic curve is mod...
[For the entire collection see Zbl 0547.00007.] \\par This is the written version of a talk at the A...
This is an exposition of some of the main features of the theory of elliptic curves and modular form...
AbstractLet E be a CM elliptic curve defined over an algebraic number field F. In the previous paper...
This thesis is an exposition on the theory of elliptic curves and modular forms as applied to the Fe...
Abordamos, de maneira elementar, as estruturas algébrica e topológica sobre a qual são construídas a...
The Modularity Theorem states that all rational elliptic curve arise from modular forms. In 1995, An...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
The Shimura-Taniyama conjecture states that the Mellin transform of the Hasse-Weil L-function of any...
The Shimura-Taniyama conjecture states that the Mellin transform of the Hasse-Weil L-function of any...
Modular forms are functions with an enormous amount of symmetry that play a central role in number t...
AbstractThe purpose of this paper is to decide the conditions under which a CM elliptic curve is mod...
[For the entire collection see Zbl 0547.00007.] \\par This is the written version of a talk at the A...