In this article, the primary aim is to introduce a new flexible family of circular distributions, namely the wrapped Linnik family which possesses the flexibility to model the inflection points and tail behavior often better than the existing popular flexible symmetric unimodal circular models. The second objective of this article is to obtain a simple and efficient estimator of the index parameter α of symmetric Linnik distribution exploiting the fact that it is preserved in the wrapped Linnik family. This is an interesting problem for highly volatile financial data as has been studied by several authors. Our final aim is to analytically derive the asymptotic distribution of our estimator, not available for other estimator. This estimator ...
We introduce a four-parameter extended family of distributions related to the wrapped Cauchy distrib...
none4noneC. Ferrari; A. E. Gelfand; G. Jona Lasinio; D. CocchiC. Ferrari; A. E. Gelfand; G. Jona Las...
In this article we study a new family of distributions in the real line. The proposed model can be s...
We propose a family of four-parameter distributions on the circle that contains the von Mises and wr...
This article presents a class of four-parameter distributions for circular data that are unimodal, p...
We propose a class of goodness–of–fit test procedures for arbitrary parametric families of circular ...
Abstract: We discuss circular distributions obtained by wrapping the classical expo-nential and Lapl...
The problems arising when there are outliers in a data set that follow a circular distribution are c...
This paper considers the three-parameter family of symmetric unimodal distributions obtained by wrap...
This study focuses on the parameter estimation and outlier detection for some types of the circular ...
The family of Symmetric Wrapped Stable (SWS) distributions can be widely used for modelling circular...
This dissertation focuses mainly on directional data in two dimensions, called ``circular data," bec...
We propose a new family of circular distributions, obtained by wrapping geometric distribution on Z+...
We introduce a new family of integer-valued distributions by considering a tempered version of the D...
This article proposes a heavy-tailed distribution for modeling positive data. The proposal arises wi...
We introduce a four-parameter extended family of distributions related to the wrapped Cauchy distrib...
none4noneC. Ferrari; A. E. Gelfand; G. Jona Lasinio; D. CocchiC. Ferrari; A. E. Gelfand; G. Jona Las...
In this article we study a new family of distributions in the real line. The proposed model can be s...
We propose a family of four-parameter distributions on the circle that contains the von Mises and wr...
This article presents a class of four-parameter distributions for circular data that are unimodal, p...
We propose a class of goodness–of–fit test procedures for arbitrary parametric families of circular ...
Abstract: We discuss circular distributions obtained by wrapping the classical expo-nential and Lapl...
The problems arising when there are outliers in a data set that follow a circular distribution are c...
This paper considers the three-parameter family of symmetric unimodal distributions obtained by wrap...
This study focuses on the parameter estimation and outlier detection for some types of the circular ...
The family of Symmetric Wrapped Stable (SWS) distributions can be widely used for modelling circular...
This dissertation focuses mainly on directional data in two dimensions, called ``circular data," bec...
We propose a new family of circular distributions, obtained by wrapping geometric distribution on Z+...
We introduce a new family of integer-valued distributions by considering a tempered version of the D...
This article proposes a heavy-tailed distribution for modeling positive data. The proposal arises wi...
We introduce a four-parameter extended family of distributions related to the wrapped Cauchy distrib...
none4noneC. Ferrari; A. E. Gelfand; G. Jona Lasinio; D. CocchiC. Ferrari; A. E. Gelfand; G. Jona Las...
In this article we study a new family of distributions in the real line. The proposed model can be s...