The k-center clustering algorithm, introduced over 35 years ago, is known to be robust to class imbalance prevalent in many clustering problems and has various applications such as data summarization, document clustering, and facility location determination. Unfortunately, existing k-center algorithms provide highly suboptimal solutions that can limit their practical application, reproducibility, and clustering quality. In this paper, we provide a novel scalable and globally optimal solution to a popular variant of the k-center problem known as generalized L_1 k-center clustering that uses L_1 distance and allows the selection of arbitrary vectors as cluster centers. We show that this clustering objective can be reduced to a mixed-integer ...