Contrastive learning has been widely applied to graph representation learning, where the view generators play a vital role in generating effective contrastive samples. Most of the existing contrastive learning methods employ pre-defined view generation methods, e.g., node drop or edge perturbation, which usually cannot adapt to input data or preserve the original semantic structures well. To address this issue, we propose a novel framework named Automated Graph Contrastive Learning (AutoGCL) in this paper. Specifically, AutoGCL employs a set of learnable graph view generators orchestrated by an auto augmentation strategy, where every graph view generator learns a probability distribution of graphs conditioned by the input. While the graph v...