In the Strip Packing problem, we are given a vertical half-strip [0 , W] × [0 , + ∞) and a collection of open rectangles of width at most W. Our goal is to find an axis-aligned (non-overlapping) packing of such rectangles into the strip such that the maximum height OPT spanned by the packing is as small as possible. It is NP-hard to approximate this problem within a factor (3 / 2 - ε) for any constant ε> 0 by a simple reduction from the Partition problem, while the current best approximation factor for it is (5 / 3 + ε) . It seems plausible that Strip Packing admits a (3 / 2 + ε) -approximation. We make progress in that direction by achieving such tight approximation guarantees for a special family of instances, which we call skewed inst...