In this talk we will present material on the semantics, computability, and algorithms for the evolution of hybrid dynamical systems, and an overview of the tool Ariadne for verification of hybrid systems [1]. Hybrid systems are characterised by undergoing continuous evolution interspersed by discrete jumps. They exhibit all the complexities of finite automata, nonlinear dynamic systems and differential equations, and are extremely difficult to analyze. We will consider hybrid systems in which the continuous dynamics is given by a differential equation x = f(x), with discrete jumps x' = ri(x) which occur as soon as a guard condition gi(x) = 0 is activated. It is clear that the evolution of a hybrid system undergoes discontinuities, but since...