Neste trabalho descrevemos os idempotentes primitivos da álgebra de grupo Fq G = Fq (Cpm × Cpn ), em que Cpm e Cpn são, respectivamente, grupos cíclicos de ordem pm e pn . Para tanto, elaboramos alguns exemplos nos quais calculamos os elementos idempotentes a partir da teoria de corpos finitos. Além disso, calculamos os idempotentes, por meio de exemplos, a partir da teoria de grupos. Nosso objetivo é mostrar, na prática, como devemos transitar seguramente entre essas diferentes abordagens, evidenciando as relações entre elas e as consequências nos cálculos dos idempotentes, gerados pela diferença das hipóteses adotadas em cada caso. Por fim, descrevemos todos os códigos abelianos LCD e auto-ortogonais da álgebra de grupo Fq G a partir dos id...