Software systems are heavily configurable, in the sense that users can adapt them according to their needs thanks to configurations. But not all configurations are equals, and some of them will clearly be more efficient than others in terms of performance. For human beings, it is quite complex to handle all the possible configurations of a system and to choose among one of them to reach a performance goal. Research work have shown that machine learning can bridge this gap and predict the performance value of a software systems based on its configurations. Problem. These techniques do not include the executing environment as part of the training data, while it could interact with the different configuration options and change their related p...