This paper presents a new algorithm based on integrating genetic algorithms, tabu search and simulated annealing methods to solve the unit commitment problem. The core of the proposed algorithm is based on genetic algorithms. Tabu search is used to generate new population members in the reproduction phase of the genetic algorithm. A simulated annealing method is used to accelerate the convergence of the genetic algorithm by applying the simulated annealing test for all the population members. A new implementation of the genetic algorithm is introduced. The genetic algorithm solution is coded as a mix between binary and decimal representation. The fitness function is constructed from the total operating cost of the generating units without p...