We point out the breakdown of two approximations widely used to describe decoherence in open quantum systems, the secular and Markov approximations. We probe their limits by studying the influence of pressure on the alignment revivals (echoes) created in properly chosen gas mixtures (HCl and CO2, pure and diluted in He) by one (two) intense and short laser pulse(s). Experiments, as well as predictions using molecular dynamics simulations, consistently demonstrate in some of the aforementioned systems the break-down of these approximations at very short times (<15 ps) after the laser kick(s)