Soil moisture estimation is a key component in hydrological processes and irrigation amounts' estimation. The synergetic use of optical and radar data has been proven to retrieve the surface soil moisture at a field scale using the Water Cloud Model (WCM). In this work, we evaluate the impact of staellite-derived vegetation descriptors to estimate the surface soil moisture. Therefore, we used the Sentinel-1 data to test the polarization ratio (σ0VH/σ0VV) and the normalized polarization ratio (IN) and the frequently used optical Normalized Difference vegetation Index (NDVI) as vegetation descriptors. Synchronous with Sentinel-1 acquisitions, in situ soil moisture were collected over wheat fields in the Kairouan plain in the center of Tunisia...