We consider the problem of minimizing ∫ a b L ( x ( t ) , x ′ ( t ) ) d t , x ( a ) = A , x ( b ) = B . \begin{equation*}\int _{a}^{b} L(x(t),x^{\prime }(t)) \, dt, \qquad x(a)=A, x(b)=B.\end{equation*} Under the assumption that the Lagrangian L L is continuous and satisfies a growth assumption that does not imply superlinear growth, we provide a result on the relaxation of the functional and s...
AbstractThis article studies the problem of minimizing ∫ΩF(Du)+G(x,u) over the functions u∈W1,1(Ω) t...
29 pagesThis paper is devoted to the autonomous Lagrange problem of the calculus of variations with ...
Sur la régularite ́ lipschitzienne des solutions d’un problème de calcul des variations avec lagra...
Let L(x, xi) : R-N x R-N -> R be a Borelian function and let (P) be the problem of minimizing integr...
For a bounded Lipschitz domain \Omega\subset\mathbb{R}^{n} and a function u_{0}\in W...
Cataloged from PDF version of article.The paper studies a relaxation of the basic multidimensional v...
International audienceWe consider a local minimizer, in the sense of the W1,1 norm, of a classical p...
We consider the following classical autonomous variational problem \[ \textrm{minimize\,} \left\{F(v...
We consider the following classical autonomous variational problem: minimize {F(v)=\int_a^b f(v(x),...
We consider the basic problem of the Calculus of variations of minimizing an integral functional amo...
AbstractIn this work we prove that, if L(t,u,ξ) is a continuous function in t and u, Borel measurabl...
International audienceWe consider a local minimizer of the classical problem of the calculus of vari...
AbstractConsider the basic problem in the calculus of variations—given a Langrangian L: [a,b] x Rn ×...
Let Omega be an open bounded subset of Rn and f a continuous function on Omega satisfying f(x) > 0 f...
AbstractWe prove Lipschitz regularity for a minimizer of the integral ∫abL(x,x′)dt, defined on the c...
AbstractThis article studies the problem of minimizing ∫ΩF(Du)+G(x,u) over the functions u∈W1,1(Ω) t...
29 pagesThis paper is devoted to the autonomous Lagrange problem of the calculus of variations with ...
Sur la régularite ́ lipschitzienne des solutions d’un problème de calcul des variations avec lagra...
Let L(x, xi) : R-N x R-N -> R be a Borelian function and let (P) be the problem of minimizing integr...
For a bounded Lipschitz domain \Omega\subset\mathbb{R}^{n} and a function u_{0}\in W...
Cataloged from PDF version of article.The paper studies a relaxation of the basic multidimensional v...
International audienceWe consider a local minimizer, in the sense of the W1,1 norm, of a classical p...
We consider the following classical autonomous variational problem \[ \textrm{minimize\,} \left\{F(v...
We consider the following classical autonomous variational problem: minimize {F(v)=\int_a^b f(v(x),...
We consider the basic problem of the Calculus of variations of minimizing an integral functional amo...
AbstractIn this work we prove that, if L(t,u,ξ) is a continuous function in t and u, Borel measurabl...
International audienceWe consider a local minimizer of the classical problem of the calculus of vari...
AbstractConsider the basic problem in the calculus of variations—given a Langrangian L: [a,b] x Rn ×...
Let Omega be an open bounded subset of Rn and f a continuous function on Omega satisfying f(x) > 0 f...
AbstractWe prove Lipschitz regularity for a minimizer of the integral ∫abL(x,x′)dt, defined on the c...
AbstractThis article studies the problem of minimizing ∫ΩF(Du)+G(x,u) over the functions u∈W1,1(Ω) t...
29 pagesThis paper is devoted to the autonomous Lagrange problem of the calculus of variations with ...
Sur la régularite ́ lipschitzienne des solutions d’un problème de calcul des variations avec lagra...