This paper presents a novel method for three-dimensional microwave imaging based on sparse processing. To enforce the sparsity of the unknown function, we take advantage of the fact that arbitrary three-dimensional electromagnetic fields can be decomposed into two components with respect to the radial direction: one with transverse-magnetic polarization and the other with transverse-electric polarization. Each component can be further expressed as a sum of spherical harmonics, which provide the dictionary exploited by the sparse processing algorithm. Our measurement model relates the data and the parameters of the spherical harmonics' sources, which are uniformly distributed on a grid sampling the imaging domain. By relying on the theory of...