RÉSUMÉ: Le centre d’attention de ce mémoire est la reconnaissance d’entités nommées à fin degré de granularité (FgNER), qui consiste à détecter les mentions d’entités nommées dans des textes en anglais et à classifier chacune d’entre elles avec un type précis provenant d’une taxonomie. Cette taxonomie décrit des types "fins" qui sont plus complexes à assigner aux mentions que les types traditionnels de la reconnaissance d’entités nommées. Dans ce mémoire, notre premier objectif est de proposer un modèle d’inférence en langue naturelle (NLI) basé sur un modèle de langue pré-entrainé pour effectuer la tâche de typage d’entités à fin degré de granularité (ET) données en entrée. Nous proposons des patrons qui se basent sur les types pour amélio...
Named Entity Recognition (NER) aims to extract and to classify rigid designators in text such as pro...
International audienceSince the Message Understanding Conferences on Information Extraction in the 8...
Fine-Grained Named Entity Typing (FG-NET) is a key component in Natural Language Processing (NLP). I...
Named entity recognition (NER) is a natural language processing (NLP) task that involves identifying...
International audienceDans cet article, nous explorons divers traits proposés dans la littérature af...
The health and life science domains are well known for their wealth of named entities found in large...
International audienceIn the latest decades, machine learning approaches have been intensively exper...
In this paper, we propose a named-entity recognition (NER) system that addresses two major limitatio...
Revised selected paper of the LTC'2011 conferenceInternational audienceMany evaluation campaigns hav...
The health and life science domains are well known for their wealth of named entities found in large...
Due to COVID19 pandemic, the 12th edition is cancelled. The LREC 2020 Proceedings are available at h...
Fine-grained Entity Recognition (FgER) is the task of detecting and classifying entity mentions into...
Fine-Grained Named Entity Typing (FG-NET) aims at classifying the entity mentions into a wide range ...
We propose FINET, a system for detect-ing the types of named entities in short inputs—such as senten...
5 pagesInternational audienceMany evaluation campaigns have shown that knowledge-based and data-driv...
Named Entity Recognition (NER) aims to extract and to classify rigid designators in text such as pro...
International audienceSince the Message Understanding Conferences on Information Extraction in the 8...
Fine-Grained Named Entity Typing (FG-NET) is a key component in Natural Language Processing (NLP). I...
Named entity recognition (NER) is a natural language processing (NLP) task that involves identifying...
International audienceDans cet article, nous explorons divers traits proposés dans la littérature af...
The health and life science domains are well known for their wealth of named entities found in large...
International audienceIn the latest decades, machine learning approaches have been intensively exper...
In this paper, we propose a named-entity recognition (NER) system that addresses two major limitatio...
Revised selected paper of the LTC'2011 conferenceInternational audienceMany evaluation campaigns hav...
The health and life science domains are well known for their wealth of named entities found in large...
Due to COVID19 pandemic, the 12th edition is cancelled. The LREC 2020 Proceedings are available at h...
Fine-grained Entity Recognition (FgER) is the task of detecting and classifying entity mentions into...
Fine-Grained Named Entity Typing (FG-NET) aims at classifying the entity mentions into a wide range ...
We propose FINET, a system for detect-ing the types of named entities in short inputs—such as senten...
5 pagesInternational audienceMany evaluation campaigns have shown that knowledge-based and data-driv...
Named Entity Recognition (NER) aims to extract and to classify rigid designators in text such as pro...
International audienceSince the Message Understanding Conferences on Information Extraction in the 8...
Fine-Grained Named Entity Typing (FG-NET) is a key component in Natural Language Processing (NLP). I...