openIn recent years, the increasing prominence of 3D point clouds in various applications has led to an escalating need for efficient storage and transmission methods. The sheer size of these point cloud datasets presents challenges in rendering, transmission, and general usability. This thesis introduces a novel approach to point cloud geometry compression leveraging neural implicit representations, specifically through the use of a DiGS network model. By training this model on a single point cloud, we achieve a compact neural representation of its geometry. Notably, this representation allows for the reconstruction of the point cloud with an arbitrary resolution. After training a reconstructing network, dynamic quantization is applied on ...