In this thesis, we harness the power of modern scientific computing to explore the formation and evolution of cosmological structure in a wide variety of astrophysical scenarios. We explore the nonlinear dynamics associated with the interplay between cold dark matter (CDM), baryons, ionizing radiation, and cosmic neutrinos, within regimes where analytic calculations necessarily fail. We begin by providing an overview of structure formation and its connections to the fields of study considered here: the epoch of reionization, galactic substructure evolution, and cosmic neutrinos. We then present a rigorous numerical convergence study of cosmological hydrodynamics simulations post-possessed with radiative transfer to study the impact of small...