Let $L/K$ be a Galois extension of number fields. We consider the problem of bounding the least prime ideal of $K$ whose Frobenius lies in a fixed conjugacy class $C$. Under the assumption of Artin's conjecture we work with Artin $L$-functions directly to obtain an upper bound in terms of irreducible characters which are nonvanishing at $C$. As a consequence we obtain stronger upper bounds for the least prime in $C$ when many irreducible characters vanish at $C$. We also prove a Deuring-Heilbronn phenomenon for Artin $L$-functions with nonnegative Dirichlet series coefficients as a key step. We apply our results to the case when $\Gal(L/K)$ is the symmetric group $S_n$. Using classical results on the representation theory of $S_n$ we give a...
Dans cette thèse, on s'intéresse à divers aspects de la théorie des courses de nombres premiers, ini...
In this paper we study finite valued multiplicative functions defined on ideals of a number field an...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
grantor: University of TorontoLet 'E/K' be a Galois extension of number fields with group ...
grantor: University of TorontoLet 'E/K' be a Galois extension of number fields with group ...
Let K be an S-n-field. For a nonidentity conjugacy class C, define N-K,N-C to be the smallest prime ...
Let K=F be a finite Galois extension of number fields. It is well known that the Tchebotarev density...
In this thesis, we study the distribution of prime ideals within the Chebotarev Density Theorem. The...
AbstractLet F be a family of number fields which are normal and of finite degree over a given number...
We study densities introduced in the works of Rubinstein-Sarnak and Ng which measure the Chebyshev b...
Let N \u3e 1 be an integer, and let 1 \u3c a_1 \u3c ... \u3c a_N be relatively prime integers. Frob...
Let N \u3e 1 be an integer, and let 1 \u3c a_1 \u3c ... \u3c a_N be relatively prime integers. Frob...
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46605/1/222_2005_Article_BF01390234.pd
AbstractLet F be a family of number fields which are normal and of finite degree over a given number...
Dans cette thèse, on s'intéresse à divers aspects de la théorie des courses de nombres premiers, ini...
Dans cette thèse, on s'intéresse à divers aspects de la théorie des courses de nombres premiers, ini...
In this paper we study finite valued multiplicative functions defined on ideals of a number field an...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
grantor: University of TorontoLet 'E/K' be a Galois extension of number fields with group ...
grantor: University of TorontoLet 'E/K' be a Galois extension of number fields with group ...
Let K be an S-n-field. For a nonidentity conjugacy class C, define N-K,N-C to be the smallest prime ...
Let K=F be a finite Galois extension of number fields. It is well known that the Tchebotarev density...
In this thesis, we study the distribution of prime ideals within the Chebotarev Density Theorem. The...
AbstractLet F be a family of number fields which are normal and of finite degree over a given number...
We study densities introduced in the works of Rubinstein-Sarnak and Ng which measure the Chebyshev b...
Let N \u3e 1 be an integer, and let 1 \u3c a_1 \u3c ... \u3c a_N be relatively prime integers. Frob...
Let N \u3e 1 be an integer, and let 1 \u3c a_1 \u3c ... \u3c a_N be relatively prime integers. Frob...
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46605/1/222_2005_Article_BF01390234.pd
AbstractLet F be a family of number fields which are normal and of finite degree over a given number...
Dans cette thèse, on s'intéresse à divers aspects de la théorie des courses de nombres premiers, ini...
Dans cette thèse, on s'intéresse à divers aspects de la théorie des courses de nombres premiers, ini...
In this paper we study finite valued multiplicative functions defined on ideals of a number field an...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...