Code smells are prevalent issues in software design that arise when implementation or design principles are violated. These issues manifest as symptoms or anomalies in the source code. Timely identification of code smells plays a crucial role in enhancing software quality and facilitating software maintenance. Previous studies have shown that code smell detection can be accomplished through the utilization of machine learning (ML) methods. However, despite their increasing popularity, research suggests that the suitability of these methods are not always appropriate due to the problem of imbalanced data. Consequently, the effectiveness of ML models may be negatively affected. This study aims to propose a novel method for detecting code smel...