This paper aims to consider the extended Perron complements for the collection of M-matrices. We first exhibit the connection between the extended Perron complements of M-matrices and nonnegative matrices. Moreover, we present some common inequalities involving extended Perron complements, Schur complements, and principal submatrices of irreducible M-matrices by utilizing the properties of M-matrices. We also discuss the monotonicity of the extended Perron complements and minimum eigenvalue. For the collection of M-matrices, we demonstrate that all (extended) Perron complements are M-matrices. Especially, we deduce that M-matrices and their Perron complements share the same minimum eigenvalue. Finally, a simple example is presented to illus...
AbstractFor a nonnegative irreducible matrix A with spectral radius ϱ, this paper is concerned with ...
AbstractLet A be an irreducible nonnegative matrix and λ(A) be the Perron root (spectral radius) of ...
AbstractFor a nonnegative irreducible matrix A, this paper is concerned with the estimation and dete...
AbstractThe concept of the Perron complement of a nonnegative and irreducible matrix was introduced ...
AbstractIn this paper, we show that the Perron complements of irreducible N0-matrices are N0-matrice...
AbstractThe concept of the Perron complement of a nonnegative and irreducible matrix was introduced ...
AbstractAn n×n matrix is called totally nonnegative if every minor of A is nonnegative. The problem ...
A real matrix is called totally nonnegative if all of its minors are nonnegative. In this paper the ...
A real matrix is called totally nonnegative if all of its minors are nonnegative. In this paper the ...
In this paper, we consider properties of the Perron complements of diagonally dominant matrices and ...
AbstractMotivated by a work of Boros, Brualdi, Crama and Hoffman, we consider the sets of (i) possib...
AbstractThe purpose of this work is to extend some of the results of Perron and Frobenius to the fol...
AbstractIn [Linear Algebra Appl. 177 (1992) 137] Smith proved that if H is a Hermitian semidefinite ...
AbstractAn inequality is obtained relating the eigenvalue of minimum modulus of an N0-matrix A to th...
AbstractLet A be an n×n nonnegative irreducible matrix, let A[α] be the principal submatrix of A bas...
AbstractFor a nonnegative irreducible matrix A with spectral radius ϱ, this paper is concerned with ...
AbstractLet A be an irreducible nonnegative matrix and λ(A) be the Perron root (spectral radius) of ...
AbstractFor a nonnegative irreducible matrix A, this paper is concerned with the estimation and dete...
AbstractThe concept of the Perron complement of a nonnegative and irreducible matrix was introduced ...
AbstractIn this paper, we show that the Perron complements of irreducible N0-matrices are N0-matrice...
AbstractThe concept of the Perron complement of a nonnegative and irreducible matrix was introduced ...
AbstractAn n×n matrix is called totally nonnegative if every minor of A is nonnegative. The problem ...
A real matrix is called totally nonnegative if all of its minors are nonnegative. In this paper the ...
A real matrix is called totally nonnegative if all of its minors are nonnegative. In this paper the ...
In this paper, we consider properties of the Perron complements of diagonally dominant matrices and ...
AbstractMotivated by a work of Boros, Brualdi, Crama and Hoffman, we consider the sets of (i) possib...
AbstractThe purpose of this work is to extend some of the results of Perron and Frobenius to the fol...
AbstractIn [Linear Algebra Appl. 177 (1992) 137] Smith proved that if H is a Hermitian semidefinite ...
AbstractAn inequality is obtained relating the eigenvalue of minimum modulus of an N0-matrix A to th...
AbstractLet A be an n×n nonnegative irreducible matrix, let A[α] be the principal submatrix of A bas...
AbstractFor a nonnegative irreducible matrix A with spectral radius ϱ, this paper is concerned with ...
AbstractLet A be an irreducible nonnegative matrix and λ(A) be the Perron root (spectral radius) of ...
AbstractFor a nonnegative irreducible matrix A, this paper is concerned with the estimation and dete...