Proceeding of: 12th European Conference, EuroGP 2009, Tübingen, Germany, April 15-17In Genetic Programming (GP), One-Point Crossover is an alternative to the destructive properties and poor performance of Standard Crossover. One-Point Crossover acts in two phases, first making the population converge to a common tree shape, then looking for the best individual within that shape. So, we understand that One-Point Crossover is making an implicit evolution of tree shapes. We want to know if making this evolution explicit could lead to any improvement in the search power of GP. But we first need to define how this evolution could be performed. In this work we made an exhaustive study of fitness distributions of tree shapes for 6 different GP pro...