This paper presents a support vector machines (SVM) framework to deal with linear signal processing (LSP) problems. The approach relies on three basic steps for model building: (1) identifying the suitable base of the Hilbert signal space in the model, (2) using a robust cost function, and (3) minimizing a constrained, regularized functional by means of the method of Lagrange multipliers. Recently, autoregressive moving average (ARMA) system identification and non-parametric spectral analysis have been formulated under this framework. The generalized, yet simple, formulation of SVM LSP problems is particularized here for three different issues: parametric spectral estimation, stability of Infinite Impulse Response filters using the gamma st...