We prove novel asymptotic freeness results in tracial ultraproduct von Neumann algebras. In particular, we show that whenever $M = M_1 \ast M_2$ is a tracial free product von Neumann algebra and $u_1 \in \mathscr U(M_1)$, $u_2 \in \mathscr U(M_2)$ are Haar unitaries, the relative commutants $\{u_1\}' \cap M^{\mathcal U}$ and $\{u_2\}' \cap M^{\mathcal U}$ are freely independent in the ultraproduct $M^{\mathcal U}$. Our proof relies on Mei-Ricard's results [MR16] regarding $\operatorname{L}^p$-boundedness (for all $1 < p < +\infty$) of certain Fourier multipliers in tracial amalgamated free products von Neumann algebras. We derive two applications. Firstly, we obtain a general absorption result in tracial amalgamated free products that recov...
AbstractWe introduce a noncommutative binary operation on matroids, called free product. We show tha...
We prove in this paper that the von Neumann algebras associated to the free non-commutative groups a...
In this thesis, we establish a sufficient condition for an amenable von Neumann algebra to be a maxi...
We study embeddings of tracial $\mathrm{W}^*$-algebras into a ultraproduct of matrix algebras throug...
AbstractTo a von Neurnann algebra A and a set of linear maps ηij:A→A, i, j∈I such that a↦(ηij)ij∈I:A...
Let $B$ be a separable $C^*$-algebra, let $\Gamma$ be a discrete countable group, let $\alpha: \Gamm...
AbstractWe give a complete answer to the questions of factoriality, type classification and fullness...
In this paper, we pursue our study of asymptotic properties of families of random matrices that have...
We obtain a complete classification of a large class of non almost periodic free Araki-Woods factors...
© 2014 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. Recently...
We construct the noncommutative Poisson boundaries of tracial von Neumann algebras through the ultra...
AbstractWe extend a recent ergodic theorem of A. Nevo and E. Stein to the non-commutative case. Letρ...
AbstractWe introduce a new free entropy invariant, which yields improvements of most of the applicat...
International audienceWe investigate the position of amenable subalgebras in arbitrary amalgamated f...
AbstractThe constructions of free subproducts of von Neumann algebras and free scaled products are i...
AbstractWe introduce a noncommutative binary operation on matroids, called free product. We show tha...
We prove in this paper that the von Neumann algebras associated to the free non-commutative groups a...
In this thesis, we establish a sufficient condition for an amenable von Neumann algebra to be a maxi...
We study embeddings of tracial $\mathrm{W}^*$-algebras into a ultraproduct of matrix algebras throug...
AbstractTo a von Neurnann algebra A and a set of linear maps ηij:A→A, i, j∈I such that a↦(ηij)ij∈I:A...
Let $B$ be a separable $C^*$-algebra, let $\Gamma$ be a discrete countable group, let $\alpha: \Gamm...
AbstractWe give a complete answer to the questions of factoriality, type classification and fullness...
In this paper, we pursue our study of asymptotic properties of families of random matrices that have...
We obtain a complete classification of a large class of non almost periodic free Araki-Woods factors...
© 2014 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. Recently...
We construct the noncommutative Poisson boundaries of tracial von Neumann algebras through the ultra...
AbstractWe extend a recent ergodic theorem of A. Nevo and E. Stein to the non-commutative case. Letρ...
AbstractWe introduce a new free entropy invariant, which yields improvements of most of the applicat...
International audienceWe investigate the position of amenable subalgebras in arbitrary amalgamated f...
AbstractThe constructions of free subproducts of von Neumann algebras and free scaled products are i...
AbstractWe introduce a noncommutative binary operation on matroids, called free product. We show tha...
We prove in this paper that the von Neumann algebras associated to the free non-commutative groups a...
In this thesis, we establish a sufficient condition for an amenable von Neumann algebra to be a maxi...