Full inference for large spatial databases incorporating spatial association in a stochastic fashion is a challenging and difficult undertaking. Hierarchical Bayesian models provide an attractive framework of achieving these goals. These models are fitted using iterative Markov Chain Monte Carlo (MCMC) algorithms. For hierarchical models, the complexity of these algorithms is an increasing function of sample size. Implementing these algorithms require special expertise and often involves writing new software especially in the context of large data sets. ^ We propose novel methodologies for a wide range of spatial processes all of which involve working with massive data sets. The first problem studies the relationship between deforestation...