Time series prediction plays a pivotal role in various areas, including for example finance, weather forecasting, and traffic analysis. In this study, time series of historical sales data from a packaging manufacturer is used to investigate the effects that clustering such data has on forecasting performance. An experiment is carried out in which the time series data is first clustered using two separate approaches: k-means and Self-Organizing Map (SOM). The clustering is feature-based, meaning that characteristics extracted from the time series are used to compute similarity, rather than the raw time series. Then, A set of Long Short-Term Memory models (LSTMs) are trained; one that is trained on the entire dataset (global model), separate ...