Táto práca hodnotí kompromisy rýchlosti a presnosti najmodernejších detektorov objektov YOLOv8 pre detekciu vozidiel v snímkoch z monitorovacích kamier na vstatných a nízkovýkonných zariadeniach. Modely YOLOv8 rôznych veľkostí, vrátane jedného s efektívnou sieťou MobileNetV2 na extrakciu príznakov a modelu YOLOv8-femto s menej ako \num{60000} parametrami, boli testované na šiestich zariadeniach, vrátane troch vstavaných platforiem z rodiny NVIDIA Jetson a počítačom Raspberry Pi 4B s nízkou výpočtovou silou. V práci boli zohľadnené rôzne faktory ovplyvňujúce výkonnosť modelov, ako napríklad ich kvantizácia, rozlíšenia vstupu, inferenčné knižnice a veľkosti dávok počas inferencie. Táto štúdia poskytuje užitočné informácie k vývoju a nasadeniu...