Consider words of length n. The set of all periods of a word of length n is a subset of {0, 1, 2, . . ., n−1}. However, any subset of {0, 1, 2, . . ., n−1} is not necessarily a valid set of periods. In a seminal paper in 1981, Guibas and Odlyzko proposed to encode the set of periods of a word into an n long binary string, called an autocorrelation, where a one at position i denotes the period i. They considered the question of recognizing a valid period set, and also studied the number of valid period sets for strings of length n, denoted κn. They conjectured that ln(κn) asymptotically converges to a constant times ln2(n). Although improved lower bounds for ln(κn)/ln2(n) were proposed in 2001, the question of a tight upper bound has remaine...