This research focuses on assessing the ability of large language models (LLMs) in representing geometries and their spatial relations. We utilize LLMs including GPT-2 and BERT to encode the well-known text (WKT) format of geometries and then feed their embeddings into classifiers and regressors to evaluate the effectiveness of the LLMs-generated embeddings for geometric attributes. The experiments demonstrate that while the LLMs-generated embeddings can preserve geometry types and capture some spatial relations (up to 73% accuracy), challenges remain in estimating numeric values and retrieving spatially related objects. This research highlights the need for improvement in terms of capturing the nuances and complexities of the underlying geo...