We consider the Min-Sum k-Clustering (k-MSC) problem. Given a set of points in a metric which is represented by an edge-weighted graph G = (V, E) and a parameter k, the goal is to partition the points V into k clusters such that the sum of distances between all pairs of the points within the same cluster is minimized. The k-MSC problem is known to be APX-hard on general metrics. The best known approximation algorithms for the problem obtained by Behsaz, Friggstad, Salavatipour and Sivakumar [Algorithmica 2019] achieve an approximation ratio of O(log |V|) in polynomial time for general metrics and an approximation ratio 2+? in quasi-polynomial time for metrics with bounded doubling dimension. No approximation schemes for k-MSC (when k is par...