A k-coloring of a tournament is a partition of its vertices into k acyclic sets. Deciding if a tournament is 2-colorable is NP-hard. A natural problem, akin to that of coloring a 3-colorable graph with few colors, is to color a 2-colorable tournament with few colors. This problem does not seem to have been addressed before, although it is a special case of coloring a 2-colorable 3-uniform hypergraph with few colors, which is a well-studied problem with super-constant lower bounds. We present an efficient decomposition lemma for tournaments and show that it can be used to design polynomial-time algorithms to color various classes of tournaments with few colors, including an algorithm to color a 2-colorable tournament with ten colors. For the...