The characteristics of stomata on leaves are crucial for the performance of plants and their impact on global water and carbon cycling. However, manually counting stomata can be time-consuming, prone to bias, and limited to small scales and sample sizes. We have created StoManager1, a high-throughput tool that automates detecting, counting, and measuring stomata to address this issue. StoManager1 uses convolutional neural networks to estimate parameters such as stomatal density, area, orientation, and variance. Our results show that StoManager1 is highly precise and has an excellent recall for the stomatal characterizing leaves from various species. This tool can automate measuring leaf stomata, making it easier to explore how leaf stomata ...