In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. In 1915, Ramanujan proved that under the assumption of the Riemann Hypothesis, the inequality $\sigma(n) 5040$ if and only if the Riemann Hypothesis is true. In 2002, Lagarias proved that if the inequality $\sigma(n) \leq H_{n} + exp(H_{n}) \times \log H_{n}$ holds for all $n \geq 1$, then the Riemann Hypothesis is true, where $H_{n}$ is the $n^{th}$ harmonic number. We prove the Robin's inequality is true ...