In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. Many consider it to be the most important unsolved problem in pure mathematics. The Robin's inequality consists in $\sigma(n) 5040$ if and only if the Riemann hypothesis is true. Given a natural number $n = q_{1}^{a_{1}} \times q_{2}^{a_{2}} \times \cdots \times q_{m}^{a_{m}} > 5040$ such that $q_{1}, q_{2}, \cdots, q_{m}$ are prime numbers and $a_{1}, a_{2}, \cdots, a_{m}$ are positive integers, then the Robin's inequality is true for $n$ when $q_{1}^{\alpha} \times q_{2}^{\alpha} \times \cdots \times q_{m}^{\alpha} \leq n$, where $\alpha = (\ln n')^{\beta}...