Noncausal, or anticipative, heavy-tailed processes generate trajectories featuring locally explosive episodes akin to speculative bubbles in financial time series data. For (Xt) a two-sided infinite α-stable moving average (MA), conditional moments up to integer order four are shown to exist provided (Xt) is anticipative enough, despite the process featuring infinite marginal variance. Formulas of these moments at any forecast horizon under any admissible parameterization are provided. Under the assumption of errors with regularly varying tails, closed-form formulas of the predictive distribution during explosive bubble episodes are obtained and expressions of the ex ante crash odds at any horizon are available. It is found that the noncaus...