This article presents a theoretical investigation of computation beyond the Turing barrier from emergent behavior in distributed (or parallel) systems. In particular, we present an algorithmic network that is a mathematical model of a networked population of randomly generated computable systems with a fixed communication protocol. Then, in order to solve an undecidable problem, we study how nodes (i.e., Turing machines or computable systems) can harness the power of the metabiological selection and the power of information sharing (i.e., communication) through the network. Formally, we show that there is a pervasive network topological condition, in particular, the small-diameter phenomenon, that ensures that every node becomes capable of...