Isotropic polycrystalline graphite samples were irradiated with ~1 GeV 197Au and 238U ions of fluences up to 5 × 1013 ions/cm2. Beam-induced changes of thermophysical properties were characterized using frequency domain photothermal radiometry (PTR) and the underlying structural transformations were monitored by Raman spectroscopy. The ion range (~60 µm) was less than the sample thickness, therefore thermal diffusivity contributions of the irradiated as well as non-irradiated layer were considered when analyzing the PTR data. At the highest applied fluences, the thermal effusivity of the damaged layer degrades down to 20% of the pristine value and the corresponding calculated values of thermal conductivity decrease from 95 Wm−1K−1 for prist...