It is experimentally proven that nanoparticles of high-Z materials can be used as radiosensitizers for photon beam therapy. In the authors' opinion, data available as of today on the impact of secondary particles (electrons, photons and positrons generated in biological tissue by penetrating beam of primary photons) on the distribution of deposited dose during photon beam therapy in the presence of nanoparticles, are insufficient. Investigation of this impact constituted the main goal of this work. Two-stage simulation was performed using Geant4 platform. During the first stage a layer of biological tissue (water) was irradiated by monoenergetic photon sources with energies ranging from 10 keV to 6 MeV. As the result of this modelin...