Wide field small aperture telescopes (WFSATs) are mainly used to obtain scientific information of point--like and streak--like celestial objects. However, qualities of images obtained by WFSATs are seriously affected by background noise and variable point spread functions. Developing high speed and high efficiency data processing method is of great importance for further scientific research. In recent years, deep neural networks have been proposed for detection and classification of celestial objects and have shown better performance than classical methods. In this paper, we further extend abilities of the deep neural network based astronomical target detection framework to make it suitable for photometry and astrometry. We add new branches...