The rapid loss of sea ice in the Arctic is one of the most striking manifestations of climate change. As sea ice melts, more open water is exposed to solar radiation, absorbing heat and generating a sea-ice–albedo feedback that reinforces Arctic warming. Recent studies stress the significance of this feedback mechanism and suggest that ice-free summer conditions in the Arctic Ocean may occur faster than previously expected, even under low-emissions pathways. Here we use an integrated assessment model to explore the implications of a potentially rapid sea-ice-loss process. We consider a scenario leading to a full month free of sea ice in September 2050, followed by three potential scenarios afterwards: partial recovery, stabilization, and co...