It is known one may use Feynman’s path integral approach to solve for a quantum propagator. Setting it=b where b=1/Tp (Tp=temperature), the approach may also be used to calculate the partition function (which is linked to a density matrix calculation). Furthermore, one may assume a form for the propagator and note that it is a solution of the time-dependent Schrodinger equation with id/dt replaced with -d/db. For example, setting P= Q(t) exp[i ( b(t)XX + g(t)YY + g1(t) XY] and equating coefficients for XX, XY and YY separately (and equating imaginary terms for Q(t)), yields differential equations for Q(t), b(t), g(t) and g1(t). In (1), this approach is used to find the partition function for an oscillator potential with an extra ax ...
Abstract Both nonzero temperature and chemical potentials break the Lorentz symmetry present in vacu...
We study the low temperature behaviour of path integrals for a simple one-dimensional model. Startin...
Abstract. We derive an approximate solution valid to all orders of h to the Bloch equation for quant...
We introduce a new approach for calculating quantum time-correlation functions and time-dependent ex...
The numerical evaluation of coherent-state path-integral representations for partition functions and...
The density matrix theory, the ancestor of density functional theory, provides the immediate framewo...
We establish a polynomial-time approximation algorithm for partition functions of quantum spin model...
The partition function (PF) plays a key role in the calculation of quantum thermodynamic properties ...
The path integral formalism is applied to derive the full partition function of a generalized Su–Sch...
We present a method for evaluating the partition function in a varying external field. Specifically,...
Abstract We study the low temperature behavior of path integrals for a simple one-dimensional model....
International audienceWe analyze the transverse dynamical two-point correlation function of the XX c...
In classical mechanics, it is possible to have different Lagrangians yield identical equations of mo...
Motived by the necessity of explicit and reliable calculations, as a valid contribution to clarify t...
AbstractWe present a method for evaluating the partition function in a varying external field. Speci...
Abstract Both nonzero temperature and chemical potentials break the Lorentz symmetry present in vacu...
We study the low temperature behaviour of path integrals for a simple one-dimensional model. Startin...
Abstract. We derive an approximate solution valid to all orders of h to the Bloch equation for quant...
We introduce a new approach for calculating quantum time-correlation functions and time-dependent ex...
The numerical evaluation of coherent-state path-integral representations for partition functions and...
The density matrix theory, the ancestor of density functional theory, provides the immediate framewo...
We establish a polynomial-time approximation algorithm for partition functions of quantum spin model...
The partition function (PF) plays a key role in the calculation of quantum thermodynamic properties ...
The path integral formalism is applied to derive the full partition function of a generalized Su–Sch...
We present a method for evaluating the partition function in a varying external field. Specifically,...
Abstract We study the low temperature behavior of path integrals for a simple one-dimensional model....
International audienceWe analyze the transverse dynamical two-point correlation function of the XX c...
In classical mechanics, it is possible to have different Lagrangians yield identical equations of mo...
Motived by the necessity of explicit and reliable calculations, as a valid contribution to clarify t...
AbstractWe present a method for evaluating the partition function in a varying external field. Speci...
Abstract Both nonzero temperature and chemical potentials break the Lorentz symmetry present in vacu...
We study the low temperature behaviour of path integrals for a simple one-dimensional model. Startin...
Abstract. We derive an approximate solution valid to all orders of h to the Bloch equation for quant...