Masovna integracija fotonaponskih elektrana u energetsku mrežu smatra se jednim od ključnih koraka u tranziciji prema održivom i ekološki prihvatljivom energetskom sustavu. Glavni izazov predstavlja činjenica da je proizvodnja solarne energije varijabilna jer ovisi o dostupnosti i količini sunčevog zračenja. Kako bi se smanjila nesigurnost i osigurala stabilnost sustava, potrebno je razviti precizne metode predviđanja proizvodnje fotonaponskih elektrana. Ovaj rad je fokusiran na rješavanje ovog problema korištenjem strojnog učenja. Predstavljene su metode strojnog učenja koje se najčešće koriste, objašnjena njihova teorijska osnova te su navedene prednosti takvog pristupa. Predložen je konkretan model LSTM neuronske mreže za predviđanje pro...
Energy communities can support the energy transition, by engaging citizens through collective energy...
In the current era, Artificial Intelligence (AI) is becoming increasingly pervasive with application...
We evaluate and compare two common methods, artificial neural networks (ANN) and support vector regr...
Masovna integracija fotonaponskih elektrana u energetsku mrežu smatra se jednim od ključnih koraka u...
Photovoltaic solar energy is booming due to the continuous improvement in photovoltaic panel efficie...
Advancements in renewable energy technology have significantly reduced the consumer dependence on co...
The fully automated and transferable predictive approach based on the long short-term memory machine...
There is increasing awareness about the need to use renewable energy sources to produce electricity....
The existing trend towards increased penetration of renewable energies in the traditional grid, and ...
This thesis consists of the study of different Machine Learning models used to predict solar power d...
Zaradi teženj po trajnostni in obnovljivi energiji se v elektroenergetski sistem priključuje vedno v...
Solar Photovoltaic has been used for long due to potential shortage of fossil fuel energy, its effec...
Rad daje pregled modela koji se danas koriste za predviđanje proizvodnje VE. Integriranje OIE, od ko...
U ovom radu kreirani su modeli strojnog učenja u svrhu predviđanja vremenskih serija za studijski sl...
The increasing trend in energy demand is higher than the one from renewable generation, in the comin...
Energy communities can support the energy transition, by engaging citizens through collective energy...
In the current era, Artificial Intelligence (AI) is becoming increasingly pervasive with application...
We evaluate and compare two common methods, artificial neural networks (ANN) and support vector regr...
Masovna integracija fotonaponskih elektrana u energetsku mrežu smatra se jednim od ključnih koraka u...
Photovoltaic solar energy is booming due to the continuous improvement in photovoltaic panel efficie...
Advancements in renewable energy technology have significantly reduced the consumer dependence on co...
The fully automated and transferable predictive approach based on the long short-term memory machine...
There is increasing awareness about the need to use renewable energy sources to produce electricity....
The existing trend towards increased penetration of renewable energies in the traditional grid, and ...
This thesis consists of the study of different Machine Learning models used to predict solar power d...
Zaradi teženj po trajnostni in obnovljivi energiji se v elektroenergetski sistem priključuje vedno v...
Solar Photovoltaic has been used for long due to potential shortage of fossil fuel energy, its effec...
Rad daje pregled modela koji se danas koriste za predviđanje proizvodnje VE. Integriranje OIE, od ko...
U ovom radu kreirani su modeli strojnog učenja u svrhu predviđanja vremenskih serija za studijski sl...
The increasing trend in energy demand is higher than the one from renewable generation, in the comin...
Energy communities can support the energy transition, by engaging citizens through collective energy...
In the current era, Artificial Intelligence (AI) is becoming increasingly pervasive with application...
We evaluate and compare two common methods, artificial neural networks (ANN) and support vector regr...