How many rounds and which computational assumptions are needed for concurrent non-malleable commitments? The above question has puzzled researchers for several years. Recently, Pass in [TCC 2013] proved a lower bound of 3 rounds when security is proven through black-box reductions to falsifiable assumptions. On the other side, positive results of Goyal [STOC 2011], Lin and Pass [STOC 2011] and Goyal et al. [FOCS 2012] showed that one-way functions are sufficient with a constant (at least 6) number of rounds. More recently Ciampi et al. [CRYPTO 2016] showed that subexponentially strong one-way permutations are sufficient with just 3 rounds. In this work we almost close the above open question by showing a 4-round concurrent non-malleable c...