We prove the security of NMAC, HMAC, AMAC, and the cascade construction with fixed input-length as quantum-secure pseudo-random functions (PRFs). Namely, they are indistinguishable from a random oracle against any polynomial-time quantum adversary that can make quantum superposition queries. In contrast, many blockcipher-based PRFs including CBC-MAC were recently broken by quantum superposition attacks. Classical proof strategies for these constructions do not generalize to the quantum setting, and we observe that they sometimes even fail completely (e.g., the universal-hash then PRF paradigm for proving security of NMAC). Instead, we propose a direct hybrid argument as a new proof strategy (both classically and quantumly). We first show t...