The deep learning recipe of casting real-world problems as mathematical optimisation and tackling the optimisation by training deep neural networks using gradient-based optimisation has undoubtedly proven to be a fruitful one. The understanding behind why deep learning works, however, has lagged behind its practical significance. We aim to make steps towards an improved understanding of deep learning with a focus on optimisation and model regularisation. We start by investigating gradient descent (GD), a discrete-time algorithm at the basis of most popular deep learning optimisation algorithms. Understanding the dynamics of GD has been hindered by the presence of discretisation drift, the numerical integration error between GD and its often...