This thesis explores two algorithmic approaches for exploiting symmetries in linear and integer linear programs. The first is orbital crossover, a novel method of crossover designed to exploit symmetry in linear programs. Symmetry has long been considered a curse in combinatorial optimization problems, but significant progress has been made. Up until recently, symmetry exploitation in linear programs was not worth the upfront cost of symmetry detection. However, recent results involving a generalization of symmetries, equitable partitions, has made the upfront cost much more manageable. The motivation for orbital crossover is that many highly symmetric integer linear programs exist, and thus, solving symmetric linear programs is of major in...