We consider the spectrum of random Laplacian matrices of the form Ln=An−Dn where An is a real symmetric random matrix and Dn is a diagonal matrix whose entries are equal to the corresponding row sums of An. If An is a Wigner matrix with entries in the domain of attraction of a Gaussian distribution, the empirical spectral measure of Ln is known to converge to the free convolution of a semicircle distribution and a standard real Gaussian distribution. We consider real symmetric random matrices An with independent entries (up to symmetry) whose row sums converge to a purely non-Gaussian infinitely divisible distribution, which fall into the class of Lévy–Khintchine random matrices first introduced by Jung [Trans Am Math Soc, 370, (2018)]. Ou...