Temporal graphs are used to abstractly model real-life networks that are inherently dynamic in nature, in the sense that the network structure undergoes discrete changes over time. Given a static underlying graph G=(V,E), a temporal graph on G is a sequence of snapshots {G_t=(V,E_t) subseteq G: t in N}, one for each time step t >= 1. In this paper we study stochastic temporal graphs, i.e. stochastic processes G={G_t subseteq G: t in N} whose random variables are the snapshots of a temporal graph on G. A natural feature of stochastic temporal graphs which can be observed in various real-life scenarios is a memory effect in the appearance probabilities of particular edges; that is, the probability an edge e in E appears at time step t depends...