Abstract Gross primary production (GPP) by boreal forests is highly sensitive to environmental changes. However, GPP simulated by land surface models (LSMs) remains highly uncertain due to the lack of direct photosynthesis observations at large scales. Carbonyl sulfide (COS) has emerged as a promising proxy to improve the representation of GPP in LSMs. Because COS is absorbed by vegetation following the same diffusion pathway as CO2 during photosynthesis and not emitted back to the atmosphere, incorporating a mechanistic representation of vegetation COS uptake in LSMs allows using COS observations to refine GPP representation. Here, we perform ecosystem COS flux and GPP data assimilations to constrain the COS- and GPP-related parameters in ...