Autoregressive (AR) models are one of the most popular ways to describe different time-varying processes in nature, economics, etc. However, their parameters are often estimated in a batch manner which makes them inefficient for handling large-scale real-time data. In our work, we investigate the feasibility of online parameter estimation for these types of models. We translate the AR model to a probabilistic factor graph which takes advantage of the factorization of the model by implementing inference as a message passing algorithm. Due to the intractability of exact parameter inference for these types of models, sum-product message passing becomes impractical. This suggests to use alternative message passing algorithms based on approximat...