We present a systematic evaluation and optimization of a complex bio-medical signal processing application on the BrainWave prototype system, targeted towards ambulatory EEG monitoring within a tiny power budget of 1 mW. The considered BrainWave processor is completely programmable, while maintaining energy-efficiency by means of a Coarse-Grained Reconfigurable Array (CGRA). This is demonstrated through the mapping and evaluation of a state-of-the-art non-convulsive epileptic seizure detection algorithm, while ensuring real-time operation and seizure detection accuracy. Exploiting the CGRA leads to an energy reduction of 73.1%, compared to a highly tuned software implementation (SW-only). A total of 9 complex kernels were benchmarked on the...