Recommender systems were originally developed as interactive intelligent systems that can proactively guide users to items that match their preferences. Despite its origin on the crossroads of HCI and AI, the majority of research on recommender systems gradually focused on objective accuracy criteria paying less and less attention to how users interact with the system as well as the efficacy of interface designs from users' perspectives. This trend is reversing with the increased volume of research that looks beyond algorithms, into users' interactions, decision making processes, and overall experience. The series of workshops on Interfaces and Human Decision Making for Recommender Systems focuses on the "human side"of recommender systems. ...